123-99905银河官方网
学术动态
  99905银河官方网[2024第2…
  99905银河官方网[2024第2…
  99905银河官方网[2024第1…
  99905银河官方网[2024第1…
  99905银河官方网[2024第1…
  99905银河官方网[2024第7…
  99905银河官方网[2024第1…
  99905银河官方网[2023第1…
  99905银河官方网[2023第1…
  99905银河官方网[2023第1…
 
99905银河官方网[2019第2期]:加拿大阿尔伯塔大学Witold Pedrycz教授学术报告会

报告时间:111日(星期五)10:05

报告地点:信息楼99905银河官方网310报告厅

人:Witold Pedrycz,加拿大阿尔伯塔大学教授University of Alberta, Canada

报告题目:From Data to Concepts: Augmented Principles, Symbolic-Granular

Descriptions, and Quality Analysis

内容简介:Concepts constitute a concise manifestation of key features of data. As being built at the higher level of abstraction than the data themselves, they capture the essence of the data and usually emerge in the form of information granules.

In this talk, we identify three main ways in which concepts are encountered and characterized: (i) numeric, (ii) symbolic, and (iii) granular. Each of these views come with their advantages and become complementary to some extent.

The numeric concepts are built by engaging various clustering techniques. The quality of numeric concepts evaluated at the numeric level is described by a reconstruction criterion.

The symbolic description of concepts, which is predominant in the realm of Artificial Intelligence (AI) and symbolic computing, can be represented by sequences of labels (integers). In such a way qualitative aspects of data are captured. This facilitates further qualitative analysis of concepts and constructs involving them by reflecting the bird’s-eye view of the data. They come hand in hand with a variety of analyses concerning constructs involving symbols, namely stability, distinguishability, redundancy, and conflict.

The granular concepts augment numeric concepts by bringing information granularity into the picture and invoking the principle of justifiable granularity in their construction.

We elaborate on the general scheme of processing of granular modeling dwelling upon a collection of granular concepts and forming a collection of granular models.

报告人简介:Witold Pedrycz (IEEE Fellow, 1998) is Professor and Canada Research Chair (CRC) in Computational Intelligence in the Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada. He is also with the Systems Research Institute of the Polish Academy of Sciences, Warsaw, Poland. Dr. Pedrycz is a foreign member of the Polish Academy of Sciences and a Fellow of the Royal Society of Canada. Witold Pedrycz has been a member of numerous program committees of IEEE conferences in the area of fuzzy sets and neurocomputing. He is a recipient of the prestigious Norbert Wiener award from the IEEE Systems, Man, and Cybernetics Society, IEEE Canada Computer Engineering Medal, Cajastur Prize for Soft Computing from the European Centre for Soft Computing, Killam Prize, and a Fuzzy Pioneer Award from the IEEE Computational Intelligence Society.

His main research directions involve Computational Intelligence, fuzzy modeling and Granular Computing, knowledge discovery and data mining, fuzzy control, pattern recognition, knowledge-based neural networks, relational computing, and Software Engineering. He has published numerous papers in this area. He is also an author of 16 research monographs covering various aspects of Computational Intelligence, data mining, and Software Engineering.

Dr. Pedrycz is vigorously involved in editorial activities. He is an Editor-in-Chief of Information Sciences, Editor-in-Chief of WIREs Data Mining and Knowledge Discovery (Wiley), and Int. J. of Granular Computing (Springer).  He serves on an Advisory Board of IEEE Transactions on Fuzzy Systems and is a member of a number of editorial boards of other international journals.