123-99905银河官方网
学术动态
  99905银河官方网[2024第2…
  99905银河官方网[2024第2…
  99905银河官方网[2024第1…
  99905银河官方网[2024第1…
  99905银河官方网[2024第1…
  99905银河官方网[2024第7…
  99905银河官方网[2024第1…
  99905银河官方网[2023第1…
  99905银河官方网[2023第1…
  99905银河官方网[2023第1…
 
99905银河官方网[2019第49期]:英国德蒙福特大学杨圣祥教授学术报告会

报告地点:信息楼99905银河官方网310报告厅

报 告 人:杨圣祥,英国德蒙福特大学教授、计算智能研究中心主任

报告主题:Evolutionary Computation for Optimization Problems

内容简介:Many-objective optimization problems (MaOPs) are multi-objective optimization problems (MOPs) that have four or more conflicting objectives to be optimized simultaneously. MaOPs are very challenging to solve. In recent years, studying evolutionary computation (EC) for solving MaOPs has become a very hot topic in the EC community with some promising results. Dynamic multi-objective optimization problems are based on multi-objective optimization problems and dynamic single objective optimization problems. They are used widely in real-world but with much difficulty. And it is also a hot field in EC for optimization. A stream is potentially unbounded, data points arrive online and each data point can be examined only once. This imposes limitations on available memory and processing time. Furthermore, streams can be noisy and the number of clusters in the data and their statistical properties can change over time. An ant colony stream clustering (ACSC) algorithm is proposed to solve above problems.

(一)

报告时间:428日(星期日)10:05

报告题目:Evolutionary Computation for Many-objective Optimization

主要内容:

1. Introducing the concept of MaOPs

2. Describing the main approaches of designing EC methods for solving MaOPs

3. Presenting some recently developed EC methods for solving MaOPs

4. Some conclusions on EC for MaOPs

(二)

报告时间:429日(星期一)10:05

报告题目:Evolutionary Optimization for Dynamic Multi-objective Optimization

主要内容:

1. Introducing the concepts and motivation about DMOPs

2. The classification, benchmarks, test problems and performance measures of DMOPs

3. Dynamic multi-objective optimization algorithms and case studies

4. Challenging issues and future works

(三)

报告时间:430日(星期二)10:05

报告题目:Ant Colony for Data Stream Clustering (ACSC)

主要内容:

1. Introducing the concepts of ACO and the features of ACSC

2. The details of ACSC algorithm

3. Experimental studies about the ACSC algorithm

 

报告人简介:杨圣祥教授1999年获东北大学博士学位。1999-2012年,分别在英国King's College London(伦敦国王学院),University of Leicester(莱斯特大学)和 Brunel University(布鲁内尔大学)工作。现任英国De Montfort University(德蒙福特大学)计算机科学与信息学院教授和计算智能研究中心主任,湖南省“芙蓉学者计划”和北京市第十二批“海聚工程”入选专家。杨教授长期从事计算智能理论、方法及应用研究,在计算智能方法、进化计算求解动态优化问题、进化计算求解多目标优化问题、智能网络优化等方面的研究做出了突出贡献,其研究工作得到英国工程和物理科学基金会、英国皇家工程学会、英国皇家学会、欧盟以及工业界的大力资助,先后承担了20余项科研基金项目,总金额达200万英镑。出版英文编著2部,编辑国际会议论文集7部,发表论文250多篇,其中SCI期刊论文80余篇。杨教授应邀担任10种国际刊物的副主编或编委,担任国际大会程序委员会主席和分会主席40余次和国际会议程序委员会委员100多次,做国际会议大会报告或专题报告10次。